八年级上册数学书人教版_八年级上册数学书人教版答案
大家好,我是小编,今天我来给大家讲解一下关于八年级上册数学书人教版的问题。为了让大家更容易理解,我将这个问题进行了归纳整理,现在就一起来看看吧。
1.初二数学知识点归纳上册人教版
2.人教版初二数学上册都有那几章
3.人教版八年级数学上册目录
4.人教版八年级数学教材分析
5.人教版八年级上册数学知识点归纳
6.人教版八年级上册数学提纲
初二数学知识点归纳上册人教版
虽然知道,造成 高二数学 成绩不好的原因是多方面的,但最核心的一点是我们对相关知识的掌握还不够透彻。初二数学知识点归纳上册人教版有哪些?一起来看看初二数学知识点归纳上册人教版,欢迎查阅!
初二数学知识点 总结 归纳
运用公式x2 +(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:
1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于
一次项的系数.
2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:
① 列出常数项分解成两个因数的积各种可能情况;
②尝试其中的哪两个因数的和恰好等于一次项系数.
3.将原多项式分解成(x+q)(x+p)的形式.
(七)分式的乘除法
1.把一个分式的分子与分母的公因式约去,叫做分式的约分.
2.分式进行约分的目的是要把这个分式化为最简分式.
3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.
4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,
(x-y)3=-(y-x)3.
5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.
6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.
(八)分数的加减法
1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.
2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.
3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.
4.通分的依据:分式的基本性质.
5.通分的关键:确定几个分式的公分母.
通常取各分母的所有因式的次幂的积作公分母,这样的公分母叫做最简公分母.
6.类比分数的通分得到分式的通分:
把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.
7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。
同分母的分式加减运算,分母不变,把分子相加减,这就是把分式的运算转化为整式运算。
8.异分母的分式加减法法则:异分母的分式相加减,先通分,变为同分母的分式,然后再加减.
9.作为最后结果,如果是分式则应该是最简分式.
(九)含有字母系数的一元一次方程
1.含有字母系数的一元一次方程
引例:一数的a倍(a≠0)等于b,求这个数。用x表示这个数,根据题意,可得方程 ax=b(a≠0)
在这个方程中,x是未知数,a和b是用字母表示的已知数。对x来说,字母a是x的系数,b是常数项。这个方程就是一个含有字母系数的一元一次方程。
含有字母系数的方程的解法与以前学过的只含有数字系数的方程的解法相同,但必须特别注意:用含有字母的式子去乘或除方程的两边,这个式子的值不能等于零。
10.同分母分式相加减,分母不变,只须将分子作加减运算,但注意每个分子是个整体,要适时添上括号.
11.对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分.
12.异分母分式的加减运算,首先观察每个公式是否最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化.
初二数学复习提纲 方法
一、克服心理疲劳
第一,要有明确的学习目的。学习就像从河里抽水,动力越足,水流量越大。动力来源于目的,只有树立正确的学习目的,才会产生强大的学习动力;
第二,要培养浓厚的学习兴趣。兴趣的形成与大脑皮层的兴奋中心相联系,并伴有愉快、喜悦、积极的情绪体验。而心理疲劳的产生正是大脑皮层抵制的消极情绪引起的`。因此,培养自己的学习兴趣,是克服心理疲劳的关键所在。有了兴趣,学习才会有积极性、自觉性、主动性,才能使心理处于一种良好的竞技状态;
第三,要注意学习的多样化,书本学习本身就是枯燥单调的,如果多次重复学习某门课程或章节内容,易使大脑皮层产生抑制,出现心理饱和,产生厌倦情绪。所以考生不妨将各门课程交替起来进行复习。
二、战胜高原现象
复习中的高原现象,是指在复习到一定时期时,往往停滞不前,不仅复习不见进步,反而有退步的现象。在高原期内,并非学习毫无进步,而是某部分进步,另外一些部分则退步,两者相抵,致使复习成效未从根本上发生变化,因而使人灰心失望。当考生在复习迎考过程中遭遇高原期时,切忌急躁或丧失信心,应找出 学习方法 、学习积极性等方面的原因。及时调整复习进度,在科学用脑、提高复习效率上多下功夫。
三、重视复习“错误”
如果在复习中不善于从错误中走出来,缺陷和漏洞就会越来越多,任其下去,最终就会蚁穴溃堤。在备考期间,要想降低错误率,除了及时订正、全面扎实复习之外,非常关键的问题就是找出原因,不断复习错误。即定期翻阅错题,回想错误的原因,并对各种错题及错误原因进行分类整理。对其中那些反复错误的问题还可考虑再做一遍,以绝“后患”。错误原因大致有:概念理解上的问题、粗心大意带来的问题以及书写潦草凌乱给自己带来的错觉问题等,从而有效地避免在考试时再犯同一类型的错误。
四、把握心理特点搞好考前复习
实践证明,一个人在气质、性格、心理稳定程度等因素也会影响考前复习。考生在复习迎考过程中,应根据自己的心理特点来制订复习迎考计划,根据自己的心态来调整复习的进度,选择与运用的复习方式方法,使自己的考前复习达到预期的效果。
1、课本不容忽视
对于初二的学生来说,都在学习新课,课本是大家都容易忽视的一个重要的复习资料。平时在学校的课堂上大家都会随堂记笔记,课本基本不会翻看,建议同学们在翻看笔记的同时,对照课本,把学过的知识点反复阅读、理解,并对照课后练习里的习题进行反复思考、琢磨、融会贯通,加深对知识点的理解。对于课本上的重点内容、重点例题也要着重记忆。
2、错题本
相信学习习惯好的学生都应该有一本错题本,把每次习题、作业、测试中的错题抄录下来,明确答案,找到错误原因,发现自己知识和能力上的薄弱点,经常拿出来翻看,遇到反复做错的题目,要主动和同学商量,向老师请教,彻底把题目弄懂、弄透,以免再犯同类错误。
初二数学全册复习提纲
第十一章 一次函数
我们称数值变化的量为变量(variable)。
有些量的数值是始终不变的,我们称它们为常量(constant)。
在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有确定的值与其对应,那么我们说x是自变量(independent variable),y是x的函数(function)。
如果当x=a时y=b,那么b叫做当自变量的值为a时的函数值。
形如y=kx(k是常数,k≠0)的函数,叫做正比例函数(proportional function),其中k叫做比例系数。
形如y=kx+b(k,b是常数,k≠0)的函数,叫做一次函数(linear function)。正比例函数是一种特殊的一次函数。
当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。
每个二元一次方程组都对应两个一次函数,于是也对应两条直线。从“形”的角度看,解方程组相当于确定两条直线交点的坐标。
第十二章 数据的描述
我们称落在不同小组中的数据个数为该组的频数(frequency),频数与数据总数的比为频率。
常见的统计图:条形图(bar graph)(复合条形图)、扇形图(pie chart)、折线图、直方图(histogram)。
条形图:描述各组数据的个数。
复合条形图:不仅可以看出数据的情况,而且还可以对它们进行比较。
扇形图:描述各组频数的大小在总数中所占的百分比。
折线图:描述数据的变化趋势。
直方图:能够显示各组频数分布的情况;易于显示各组之间频数的差别。
在频数分布(frequency distribution)表中:我们把分成组的个数称为组数,每一组两个端点的差称为组距。
求出各个小组两个端点的平均数,这些平均数称为组中值。
第十三章 全等三角形
能够完全重合的两个图形叫做全等形(congruent figures)。
能够完全重合的两个三角形叫做全等三角形(congruent triangles)。
全等三角形的性质:全等三角形对应边相等;全等三角形对应角相等。
全等三角形全等的条件:三边对应相等的两个三角形全等。(SSS)
两边和它们的夹角对应相等的两个三角形全等。(SAS)
两角和它们的夹边对应相等的两个三角形全等。(ASA)
两个角和其中一个角的对边对应相等的两个三角形全等。(AAS)
角平分线的性质:角平分线上的点到角的两边的距离相等。
到角两边的距离相等的点在角的平分线上。
第十四章 轴对称
经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线(perpendicular bisector)。
轴对称图形的对称轴,是任何一对对应点所连接线段的垂直平分线。
线段垂直平分线上的点与这条线段两个端点的距离相等。
由一个平面图形得到它的轴对称图形叫做轴对称变换。
等腰三角形的性质:
等腰三角形的两个底角相等。(等边对等角)
等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。(三线合一)(附:顶角+2底角=180°)
如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边)
有一个角是60°的等腰三角形是等边三角形。
在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
第十五章 整式
式子是数或字母的积的式子叫做单项式(monomial)。单独的一个数或字母也是单项式。
单项式中的数字因数叫做这个单项式的系数(coefficient)。
一个单项式中,所有字母的指数的和叫做这个单项式的次数(degree)。
几个单项式的和叫做多项式(polynomial)。每个单项式叫多项式的项(term),其中,不含字母的叫做常数项(constant term)。
多项式里次数的项的次数,就是这个多项式的次数。
单项式和多项式统称整式(integral expression_r)。
所含字母相同,并且相同字母的指数也相同的项叫做同类项。
把多项式中的同类项合并成一项,即把它们的系数相加作为新的系数,而字母部分不变,叫做合并同类项。
几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接;然后去括号,合并同类项。
同底数幂相乘,底数不变,指数相加。
幂的乘方,底数不变,指数相乘
积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
(x+p)(x+q)=x^2+(p+q)x+pq
平方差公式:(a+b)(a-b)=a^2-b^2
完全平方公式:(a+b)^2=a^2+2ab+b^2 (a-b)^2=a^2-2ab+b^2
(a+b+c)^2=a^2+2a(b+c)+(b+c)^2
同底数幂相除,底数不变,指数相减。
任何不等于0的数的0次幂都等于1。
第十六章 分式
如果A、B表示两个整式,并且B中含有字母,那么式子A/B叫做分式(fraction)。
分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。
分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。
分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
分式乘方要把分子、分母分别乘方。
a^-n=1/a^n (a≠0) 这就是说,a^-n (a≠0)是a^n的倒数。
分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。
第十七章 反比例函数
形如y=k/x(k为常数,k≠0)的函数称为反比例函数(inverse proportional function)。
反比例函数的图像属于双曲线(hyperbola)。
当k>0时,双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小;
当k<0时,双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大。
第十八章 勾股定理
勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a^2+b^2=c^2
勾股定理逆定理:如果三角形三边长a,b,c满足a^2+b^2=c^2,那么这个三角形是直角三角形。
经过证明被确认正确的命题叫做定理(theorem)。
我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理)
第十九章 四边形
有两组对边分别平行的四边形叫做平行四边形。
平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等。平行四边形的对角线互相平分。
平行四边形的判定:
1.两组对边分别相等的四边形是平行四边形;
2.对角线互相平分的四边形是平行四边形;
3.两组对角分别相等的四边形是平行四边形;
4.一组对边平行且相等的四边形是平行四边形。
三角形的中位线平行于三角形的第三边,且等于第三边的一半。
直角三角形斜边上的中线等于斜边的一半。
矩形的性质:矩形的四个角都是直角;矩形的对角线平分且相等。
矩形判定定理:
1.有一个角是直角的平行四边形叫做矩形。
2.对角线相等的平行四边形是矩形。
3.有三个角是直角的四边形是矩形。
菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
菱形的判定定理:
1.一组邻边相等的平行四边形是菱形(rhombus)。
2.对角线互相垂直的平行四边形是菱形。
3.四条边相等的四边形是菱形。
S菱形=1/2×ab(a、b为两条对角线)
正方形的性质:四条边都相等,四个角都是直角。
正方形既是矩形,又是菱形。
正方形判定定理:
1.邻边相等的矩形是正方形。
2.有一个角是直角的菱形是正方形。
一组对边平行,另一组对边不平行的四边形叫做梯形(trapezium)。
等腰梯形的性质:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等。
等腰梯形判定定理:同一底上两个角相等的梯形是等腰梯形。
线段的重心就是线段的中点。
平行四边形的重心是它的两条对角线的交点。
三角形的三条中线交于疑点,这一点就是三角形的重心。
宽和长的比是(根号5-1)/2(约为0.618)的矩形叫做黄金矩形。
第二十章 数据的分析
将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。
一组数据中出现次数最多的数据就是这组数据的众数(mode)。
一组数据中的数据与最小数据的差叫做这组数据的极差(range)。
方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。
数据的收集与整理的步骤:1.收集数据 2.整理数据 3.描述数据 4.分析数据 5.撰写调查 报告
初二数学知识点归纳上册人教版相关 文章 :
★ 人教版八年级数学上册知识点总结
★ 初二数学上册知识点总结
★ 初二数学上册知识点总结归纳
★ 数学八年级上册知识人教版
★ 八年级数学上册知识点归纳
★ 初二数学上册知识点总结2020
★ 八年级上册数学的知识点归纳
★ 人教版八年级上册数学教材分析
★ 初二上册数学知识点总结与学习方法
★ 八年级上册数学知识点总结
人教版初二数学上册都有那几章
人教版八年级上册数学教材分析 范文 一
一、八年级数学(上)主要章节
第11章 全等三角形 第12章 轴对称 第13章 实数
第14章 一次函数 第15章 整式的乘除与 因式分解
第11章和12章为几何内容主要让学生通过动手操作探究全等和对称。第14章 一次函数是难点,抽象应注重建模思想。第15章 整式的乘除与 因式分解非常重要,特别是灵活分解因式。根据去年的 经验 ,本学期有到半程的实践活动,课程显得更紧张,所以前两章较为简单又预习过进度应紧凑些。把重点放在15章难点放在14章。
第11章 全等三角形
在?三角形全等的条件?一节设计了8个探究,让学生经历三角形全等条件的探索过程,突出体现新教材的设计思想。首先让学生探索两个三角形满足三条边对应相等,三个角对应相等这六个条件中的一个或两个,两个三角形是否一定全等。然后让学生探索两个三角形满足上述六个条件中的三个,两个三角形是否一定全等,并按如下的顺序展开:
1)SSS;(2)SAS;3)SSA;(4)ASA;(5)AAS;(6)AAA
总的发展脉络是三边,两边一角(包括(2),(3)两种情况),一边两角(包括(4),(5)两种情况),三个角,这样学生容易把握探索的过程。这样的处理也与先给出可判定全等的情况,再给出不一定能判定全等的情况的处理不同,尽量排除人为安排的因素,呈现更为自然。最后让学生将三角形全等的条件运用于直角三角形,讨论得出直角三角形全等的条件。其中,斜边和一条直角边对应相等不能运用三角形全等的条件,又需要学生进一步加以实验探索。
第12章 轴对称
在?轴对称?一章,与轴对称有关的性质是让学生通过观察、探究得到的。对于关于坐标轴对称的点的坐标的关系,课本是通过让学生画出一些已知点及其对称点,确定对称点的坐标,比较每对对称点的坐标得到的。对于等腰三角形的性质,则是让学生把等腰三角形适当对折,找出其中重合的线段和角,自己去发现有关的结论。
第13章 实数
实数一章内容调整与大纲下的课本相比,本章作了一些调整:(1)加强了实数学习必要性的感受;(2)重视在现实背景中对运算意义的理解和运算的应用;(3)精确运算的要求有所降低,不要求分母有理化;(4)加强了估算;(5)鼓励使用计算器进行有关繁难的计算和近似计算。
第14章 一次函数
?一次函数?在现行教材中与传统教材相比,在课程目标上,注重了知识的探索过程,更加突出了数学的?建模?思想;注重了学生形象性思维能力的培养,提高了学生利用?数形结合?解决问题的能力;注重了?一次函数?的应用,加强了数学与现实生活的联系。
第15章 整式的乘除与因式分解
本章的主要内容是整式的乘除运算、乘法公式以及因式分解。本章内容建立在已经学习了的有理数运算、列简单的代数式、一次方程及不等式、整式的加减运算等知识的基础上。整式的乘除运算和因式分解是基本而重要的代数初步知识,这些知识是以后学习分式和根式运算、函数等知识的基础,在后续的数学学习中具有重要意义,
注重公式的趣味性学习和补充十字相乘,为解决一元二次方程的应用题走捷径。
三、八年级数学组本学期努力方向
1、认真做好教学六认真工作。把教学六认真作为提高成绩的主要 方法 ,认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真学习。
2、引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。引导学生写小论文,写复习提纲,使知识来源于学生的构造。
3、引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质,提高学生举一反三的能力,这是提高学生素质的根本途径之一,培养学生的 发散思维 。
最后祝大家新学期工作愉快!谢谢!
人教版八年级上册数学教材分析范文二
?全等三角形?,本章的主要内容是全等三角形,主要学习全等三角形的性质及各种三角形全等的判定方法,同时学会如何利用全等三角形进行证明。
本章的教学目标是:
1、了解全等三角形的概念和性质,能够 准确地辨认全等三角形中的对应元素。
2、探索三角形全等的判定方法,能利用三角形全等进行证明,掌握 综合 法证明的格式。
3、会作角的平分线,了解角的平分线的性质,能利用三角形全等证明角的平分线的性质,会利用角的平分线的性质进行证明。
因为学生对于证明过程的书写和推理还比较生疏,这一章书学生学起来应该比较困难,所以确定本章的重难点是要使学生理解证明的基本过程,掌握用综合法证明的格式。
本章在教学中注重探索结论,注重推理能力的培养,注重联系实际。
人教版八年级上册数学教材分析范文三
轴对称,本章的主要内容是从生活中的图形入手,学习轴对称及其性质,欣赏、体验轴对称在现实生活中的广泛应用。在此基础上,利用轴对称,探索等腰三角形的性质,学习它的判定方法,并进一步学习等边三角形。
本章的教学目标是:
1、通过具体实例认识轴对称、轴对称图形,探索轴对称的基本性质,理解对应点连线被对称轴垂直平分的性质。
2、了角线段垂直平分线的概念,探索并掌握其性质;了解等腰三角形、等边三角形的有关概念必、性质及判定方法。
3、能初步应用本章所学的知识解释生活中的现象及解决简单的实际问题。在观察、操作、论证、交流的过程中,发展空间观念,激发学习图形与几何的兴趣。
轴对称的性质是本章的重点,对于一些图形的性质的证明是本章的难点。要克服这个难点,关键是要加强对问题分析的教学,帮助学生分析问题的思路。
因为对称是现实生活中广泛存在的一种现象,所发以教学中注意联系实际,注意让学生经历观察、实验、归纳、论证的过程,注重多媒体的应用。
人教版八年级上册数学教材分析相关 文章 :
1. 人教版八年级上册数学教学计划
2. 八年级数学上册教学大纲
3. 人教版八年级上册数学教学工作计划
4. 2016年八年级上册数学教学计划
5. 八年级上学期数学教学计划
人教版八年级数学上册目录
第十一章一次函数
11.1 变量与函数
11.2 一次函数
11.3 用函数观点看方程(组)与
不等式
第十二章数据的描述
12.1 几种常见的统计图表
12.2 用图表描述数据
12.3 课题学习:从数据谈节水
第十三章全等三角形
13.1 全等三角形
13.2 三角形全等的条件
13.3 角的平分线的性质
第十四章轴对称
14.1 轴对称
14.2 轴对称变换
14.3 等腰三角形
第十五章整式
15.1 整式的加减
15.2 整式的乘法
15.3 乘法公式
15.4 整式的除法
15.5 因式分解
人教版八年级数学教材分析
人教版八年级数学上册教材目录
第十一章 三角形
11.1 与三角形有关的线段
信息技术应用 画图找规律
11.2 与三角形有关的角
阅读与思考 为什么要证明
11.3 多边形及其内角和
数学活动
小结
复习题11
第十二章 全等三角形
12.1 全等三角形
12.2 三角形全等的判定
信息技术应用 探究三角形全等的条件
12.3 角的平分线的性质
数学活动
小结
复习题12
第十三章 轴对称
13.1 轴对称
13.2 画轴对称图形
信息技术应用 用轴对称进行图案设计
13.3 等腰三角形
实验与探究 三角形中边与角之间的不等关系
13.4 课题学习 最短路径问题
数学活动
小结
复习题13
第十四章 整式的乘法与因式分解
14.1 整式的乘法
14.2 乘法公式
阅读与思考 杨辉三角
14.3 因式分解
数学活动
小结
复习题14
第十五章 分式
15.1 分式
15.2 分式的运算
阅读与思考 容器中的水能倒完吧
15.3 分式方程
数学活动
小结
复习题15
部分中英文词汇索引
八年级数学整式知识总结式子是数或字母的积的式子叫做单项式(monomial)。单独的一个数或字母也是单项式。
单项式中的数字因数叫做这个单项式的系数(coefficient)。
一个单项式中,所有字母的指数的和叫做这个单项式的次数(degree)。
几个单项式的和叫做多项式(polynomial)。每个单项式叫多项式的项(term),其中,不含字母的叫做常数项(constant term)。
多项式里次数最高的项的次数,就是这个多项式的次数。
单项式和多项式统称整式(integral expression_r)。
所含字母相同,并且相同字母的指数也相同的项叫做同类项。
把多项式中的同类项合并成一项,即把它们的系数相加作为新的系数,而字母部分不变,叫做合并同类项。
几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接;然后去括号,合并同类项。
同底数幂相乘,底数不变,指数相加。
幂的乘方,底数不变,指数相乘
积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
(x+p)(x+q)=x^2+(p+q)x+pq
平方差公式:(a+b)(a-b)=a^2-b^2
完全平方公式:(a+b)^2=a^2+2ab+b^2 (a-b)^2=a^2-2ab+b^2
(a+b+c)^2=a^2+2a(b+c)+(b+c)^2
同底数幂相除,底数不变,指数相减。
人教版八年级上册数学知识点归纳
一直以来,教材始终是学校 教育 中重要的教育资料,它是教学活动内容的主要载体,也是联系 八年级 数学教师和学生的重要媒介,我整理了关于人教版八年级数学教材分析,希望对大家有帮助!
人教版八年级数学教材分析 范文 一
人教版《义务教育课程标准实验教科书?数学》八年级上册包括全等三角形,轴对称,实数,一次函数,整式五章内容,学习内容涉及到了三个领域:“数与代数”“空间与图形” “实践与综合应用”。
第十一章“全等三角形”
“全等三角形”一章首先让学生认识形状、大小相同的图形,给出全等三角形的概念,然后让学生探索两个三角形全等的条件,并运用有关结论进行证明,最后掌握角的平分线的性质。
一、课程学习目标
1.了解全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素;
2.探索三角形全等的条件,能利用三角形全等进行证明,掌握综合法证明的格式;
3.了解角的平分线的性质,能利用三角形全等证明角的平分线的性质,会利用角的平分线的性质进行证明。
二、教科书内容
本章的主要内容是全等三角形,主要学习全等三角形的性质及各种三角形全等的判定 方法 ,同时学会如何利用全等三角形进行证明。本章分三节,第一节介绍全等形,包括三角形全等的概念,全等三角形的性质。第二节介绍一般三角形全等的判定方法,及直角三角形全等的一个特殊的判定方法。在第三节,利用直角三角形的判定方法,证明了角平分线的性质,并会利用角的平分线的性质进行证明
第十二章“轴对称”简介
第12章是“轴对称”,主要包括轴对称和等腰三角形的有关内容。本章共安排了三个小节和两个选学内容,教学时间约需12课时。
一、课程学习目标
1.通过具体实例认识轴对称、轴对称图形,探索轴对称的基本性质,理解对应点连线被对称轴垂直平分的性质;
2.探索简单图形之间的轴对称关系,能够按照要求作出简单图形经过一次或两次轴对称后的图形;认识和欣赏轴对称在现实生活中的应用,能利用轴对称进行简单的图案设计;
3.了解线段垂直平分线的概念,探索并掌握其性质;了解等腰三角形、等边三角的有关概念,探索并掌握它们的性质以及判定方法;
4.能初步应用本章所学的知识解释生活中的现象及解决简单的实际问题,在观察、操作、想象、论证、交流的过程中,发展空间观念,激发学习空间与图形的兴趣。
二、教科书内容
本章的主要内容是从生活中的图形入手,学习轴对称及其基本性质,欣赏、体验轴对称在现实生活中的广泛应用。在此基础上,利用轴对称变换,探索等腰三角形的性质,学习它的判定方法,并进一步学习等边三角形。
第十三章 “实数”简介
一、教材主要内容:
本章主要内容包括算术平方根、平方根、立方根以及实数的有关概念和运算.本章的重点是算术平方根和平方根的概念和求法,本章难点是平方根和实数的概念.
二、 课程学习目标
1.了解算术平方根、平方根、立方根的概念,会用根号表示数的平方根、立方根;
2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根;
3.了解无理数和实数的概念,知道实数与数轴上的点一一对应,有序实数对与平面上的点一一对应;了解数的范围由有理数扩大到实数后,一些概念、运算等的一致性及其发展变化;
4.能用有理数估计一个无理数的大致范围.
第十四章 “一次函数”简介
一、地位和作用:
一次函数是在学完平面直角坐标系的基础上学习的,学生对数形结合法有了一定的认识,它为本章的学习做了铺垫,一次函数的学习又为后续函数的学习作了铺垫,因此本章内容起着承上启下的作用。14.1 变量与函数是全章的基础部分,14.2一次函数是全章的重点内容,14.3用函数观点看方程与不等式是引申的内容,起加强知识前后联系的作用,14.4选择方案是探究性学习的内容,以课题学习的形式呈现,突出建立数学模型的实际意义和思想方法。
二、教学目标
1.以探索实际问题中的数量关系和变化规律为背景,经历“找出常量和变量,建立并表示函数模型,讨论函数模型,解决实际问题”的过程,体会函数是刻画现实世界中变化规律的重要数学模型;
2.结合实例,了解常量、变量和函数的概念,体会“变化与对应”的思想,了解函数的三种表示方法(列表法、解析式法和图象法),能利用图象数形结合地分析简单的函数关系;
3.理解正比例函数和一次函数的概念,会画它们的图象,能结合图象讨论这些函数的基本性质,能利用这些函数分析和解决简单实际问题;
4.通过讨论一次函数与方程(组)及不等式的关系,从运动变化的角度,用函数的观点加深对已经学习过的方程(组)及不等式等内容的认识,构建和发展相互联系的知识体系;
5.在课题学习中,以选择方案为问题情境,进行探究性学习,进一步体会建立数学模型的方法与作用,提高综合运用函数知识分析和解决实际问题的能力.
第十五章 “整式的乘除与因式分解”
本章是“整式的乘除与因式分解”。本章的主要内容是整式的乘除运算、乘法公式以及因式分解。本章内容建立在已经学习了的有理数运算、列简单的代数式、一次方程及不等式、整式的加减运算等知识的基础上。整式的乘除运算和因式分解是基本而重要的代数初步知识,这些知识是以后学习分式和根式运算、函数等知识的基础,在后续的数学学习中具有重要意义,同时,这些知识也是学习物理、化学等学科及其他科学技术不可缺少的数学基础知识.
二、教学目标
1. 使学生掌握正整数幂的乘、除运算性质,能用代数式和文字语言正确地表述这些性质,并能运用它们熟练地进行运算。使学生掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算。
2. 使学生会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,能利用公式进行乘法运算。
3. 使学生掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运用运算律与乘法公式简化运算。
4.使学生理解因式分解的意义,并感受分解因式与整式乘法是相反方向的运算,掌握提公因式法和公式法(直接运用公式不超过两次)这两种分解因式的基本方法,了解因式分解的一般步骤;能够熟练地运用这些方法进行多项式的因式分解。
人教版八年级数学教材分析范文二
本学期我担任了八年级(3)班,(6)班的数学教学工作,从上年的成绩看,大多数学生的进步还是比较明显,态度端正,热爱学习,希望继续努力更好是实现自己的目标,当 也有一部分学生不爱学习数学,对数学没有兴趣,对于这部分学生需要的是端正他们的态度,激发他们的学习兴趣是重中之重。同时需要更多的沟通,了解学生的兴趣动向,从而 反思 自己的 教学方法 。不断的学习,提高自身的教学能力。
一 指导思想
教育学生掌握基础知识与基本技能培养学生的 逻辑思维 能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分析抽象、概括。会用归纳演绎、类比进行简单的推理。
二、学情分析
八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。两班比较,学生思维非常活跃,但后进面较大,有少数学生不上进,思维不紧跟老师。学生总体成绩不均衡,有大多数同学基础特差,问题较严重。要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。在学习能力上,学生课外主动获取知识的能力较差,为减轻学生的经济负担与课业负担,不提倡学生买教辅参考书,学生自主拓展知识面,向深处学习知识的能力没有得到培养。应在合适的时候补充课外知识,拓展学生的知识面,提升学生素质;在 学习态度 上,绝大部分学生上课能全神贯注,积极的投入到学习中去,少数几个学生对数学处于一种放弃的心态,课堂作业,大部分学生能认真完成,少数学生需要教师督促,这一少数学生也成为老师的重点牵挂对象,课堂家庭作业,学生完成的质量要打折扣;学生的学习习惯养成还不理想,预习的习惯,进行 总结 的习惯,自习课专心致至学习的习惯,主动纠正(考试、作业后)错误的习惯,部分学生不具有,需要教师的督促才能做,陶行知说:教育就是培养习惯,这是本期教学中重点予以关注的。
三、教材分析
第一章主要研究分式及其基本性质,分式的通分和约分,分式的加、减、乘、除及乘方运算,分式方程等内容,并结合分式的运算,研究了整数指数幂的问题,将正整数指数幂的运算性质推广到整数范围,且完善了科学计数法。
第二章全等三角形是研究图形的重要工具,学生只有掌握好全等三角形的内容,并且能灵活运用它们,才能学好四边形、圆等内容。学生已学过线段、角、相交线、平行线以及三角形的有关知识,七年级两册教科书中安排了一些说理的内容,前面又学习了全等三角形的概念和性质,这节是探究三角形全等的条件的第一节课,让学生经历三角形全条件的探索过程,突出体现了新教材的设计思想。从本节开始,要使学生理解证明的基本过程,掌握用综合法证明的格式。这既是本章的重点,也是教学的难点。教科书把研究三角形全等条件的重点放在第一个条件(“边边边”条件)上,使学生以“边边边”条件为例,理解什么是三角形的判定,怎样判定。在掌握了“边边边”条件的基础上,使学生学会怎样运用“边边边”条件进行推理论证,怎样正确地表达证明过程。“边边边”条件掌握好了,再学习其他条件就不困难了。
第三章实数一章内容调整与大纲下的教科书相比,本章作了一些调整:
(1)加强了实数学习必要性的感受;
(2)重视在现实背景中对运算意义的理解和运算的应用;
(3)精确运算的要求有所降低,不要求分母有理化;
(4)加强了估算;
(5)鼓励使用计算器进行有关繁难的计算和近似计算。这些调整的依据和《有理数及其运算》类似,主要是基于对这样几个问题的思考:为什么要运算,也就是运算的意义与作用是什么?现实生活中对运算的要求是什么,是否都是精确的,能否精确?不能精确,如何估计和近似计算?
3、过去大纲下的教科书一般先学习了平方根再学习算术平方根,具体做法一般是:直接从运算的角度思考“平方已知求原来的数”,从而得到平方根,而实际生活中可能只选择其中一个正的,因此学习算术平方根。这种做法基于教科书的一贯思路:从数学上得到各种运算,到现实生活中进行应用,也就是先准备知识,再进行知识运用。 但本教科书对于无理数的引入已经做了调整,希望在问题中引入新知,对于开方也是这样,而实际问题中研究的开方多是正的,因此先研究正的方根即算术平方根。
第四章是一元一次不等式,不等式是刻画世界中量与量之间不等关系的有效数学模型,一元一次不等式是表示不等关系的最基本的工具,是学习其他相关数学知识的基础。通过本章的学习,了解不等式的解和解集以及不等式的概念,探索不等式的基本性质,掌握一元一次不等式和一元一次不等式组的解法。
第五章是二次根式这章主要学习的是二次根式的概念和性质、二次根式的乘法和加减。掌握二次根式的运算法则,以及二次根式在生活中的运用。重视运用所学的知识解决生活中的实际问题。
四、提高学科教育质量的主要 措施 :
1、认真做好教学六认真工作。把教学六认真作为提高成绩的主要方法,认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认 真制作测试试卷,也让学生学会认真学习。
2、兴趣是最好的老师,爱因斯坦如是说。激发学生的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。
3、引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。引导学生写小论文,写复习提纲,使知识来源于学生的构造。
4、引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质,提高学生举一反三的能力,这是提高学生素质的根本途径之一,培养学生的 发散思维 ,让学生处于一种思如泉涌的状态。
5、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。
6、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。
7、指导成立“课外兴趣小组”的民间组织,开展丰富多彩的课外活动,课外调查,操作实践,带动班级学生学习数学,同时发展这一部分学生的特长。
8、开展分层教学,布置作业设置A、B、C三类分层布置分别适合于差、中、好三类学生,课堂上的提问照顾好好、中、差三类学生,使他们都等到发展。
9、进行个别辅导,优生提升能力,扎实打牢基础知识,对差生,一些关键知识,辅导差生过关,为差生以后的发展铺平道路
人教版八年级数学教材分析范文三
本册书内容包括“全等三角形”“轴对称”“实数”“一次函数”“整式的乘除与因式分解”五章。下面分章分析如下。
第十一章“全等三角形”,本章的主要内容是全等三角形,主要学习全等三角形的性质及各种三角形全等的判定方法,同时学会如何利用全等三角形进行证明。
本章的教学目标是:
1、了解全等三角形的概念和性质,能够 准确地辨认全等三角形中的对应元素。
2、探索三角形全等的判定方法,能利用三角形全等进行证明,掌握 综合 法证明的格式。
3、会作角的平分线,了解角的平分线的性质,能利用三角形全等证明角的平分线的性质,会利用角的平分线的性质进行证明。
因为学生对于证明过程的书写和推理还比较生疏,这一章书学生学起来应该比较困难,所以确定本章的重难点是要使学生理解证明的基本过程,掌握用综合法证明的格式。
本章在教学中注重探索结论,注重推理能力的培养,注重联系实际。
第十二章轴对称,本章的主要内容是从生活中的图形入手,学习轴对称及其性质,欣赏、体验轴对称在现实生活中的广泛应用。在此基础上,利用轴对称,探索等腰三角形的性质,学习它的判定方法,并进一步学习等边三角形。
本章的教学目标是:
1、通过具体实例认识轴对称、轴对称图形,探索轴对称的基本性质,理解对应点连线被对称轴垂直平分的性质。
2、了角线段垂直平分线的概念,探索并掌握其性质;了解等腰三角形、等边三角形的有关概念必、性质及判定方法。
3、能初步应用本章所学的知识解释生活中的现象及解决简单的实际问题。在观察、操作、论证、交流的过程中,发展空间观念,激发学习图形与几何的兴趣。
轴对称的性质是本章的重点,对于一些图形的性质的证明是本章的难点。要克服这个难点,关键是要加强对问题分析的教学,帮助学生分析问题的思路。
因为对称是现实生活中广泛存在的一种现象,所发以教学中注意联系实际,注意让学生经历观察、实验、归纳、论证的过程,注重多媒体的应用。
第十三章实数,本章主要内容包括算术平方根、平方根、立方根以及实数的有关概念和运算。
本章的教学目标是:
1、了解算术平方根、平方根、立方根的概念,会用根号表示数的平方根、立方根。
2、了解开方与乘方互为逆运算,会求某些数的平方根、立方根。
3、了解无理数和实数的概念,知道实数与数轴 上的点一一对应。能用有理数估计一个无理数的大致范围。
学生在前面的学习中没有接触到平方根、立方根、无理数,所以学习这些知识时应注意加强与实际 的联系,在解决实际问题的过程中,让学生认识实数的有关概念和运算,体会数的扩充过程中表现出来的概念、运算等方面的一致性各发展变化。留给学生探索交流的空间,让学生通过探究活动经历了一个由特殊到一般的认识过程 。
第十四章一次函数,本章的主要内容包括:变量与函数的概念,函数的三种表示法,正比例函数和一次函数 的概念、图象、性质以及应用举例,用函数观点再认识一元一次方程、一元一次不等式和二元一次方程组,课题学习“选择方案”。
1、结合实例,了解常量、变量和函数的概念,体会“变化与对应”的思想,了解函数的三种表示法,能利用图象数形结合地分析简单的函数关系。
2、理解正比例函数和一次函数的概念,会画它们的图象,能结合图象讨论这些函数的基本性质,能利用这些函数分析和解决简单的实际问题。
3、通过讨论一次函数与方程(组)及不等式的关系,从运动变化的角度,用函数的以观点加深对已经学习过的方程(组)及不等式内容的认识,
4、通过讨论课题学习中选择最佳方案的问题,提高综合运用所学函数知识分析和解决实际问题的能力。
函数这一章是这册书里对学生来说最难的一个内容,学生学起来特别吃力,理解起来特别难,所以在教学中要借助实际问题情境,由具体到抽象地认识函数,通过函数应用举例,体现数学建模思想。重视数形结合的研究方法。注重对于基础知识和基本技能的掌握,提高基本能力。结合课题学习,提高实践意识与综合应用数学知识的能力。
第十五章整式的乘除与因式分解,本章的主要内容是整式的乘除运算、乘法公式以及因式分解。这些知识是以后学习分式和根式运算、函数等知识的基础,同时也是学习物理、化学等学科及其他科学技术不可或缺的数学工具。
本章的教学目标是:
1、使学生掌握正整数幂的乘、除运算性质,能用代数式和文字语言正确地表述这些性质,并能运用它们熟练地进行运算。
2、使学生会推导乘法公式,了解公式的几何意义,能利用公式进行乘法运算。
3、使学生掌握整式的加、减、乘、除、乘方的较简单的混合运算并能灵活地运用运算律与乘法公式简化运算。
4、使学生理解因式分解的意义,并感受分解因式与整式乘法是相反方向的变形,掌握提公因式法和运用公式法这两种分解因式的基本方法,了解因式 分解 的一般步骤;能够熟练地运用这些方法进行多项式的因式分解。
本章的内容与学生学过的有理数加、减、乘、除运算相似,所以学生学得较轻松,掌握得也较快。但运算性质和公式的发生和归纳过程要重视,适时渗透转化的思想方法以及注意数学知识间的内存联系,充分发挥学生的主观能动性。
人教版八年级数学教材分析相关 文章 :
1. 人教版八年级上册数学教学计划
2. 八年级数学上册教学大纲
3. 人教版八年级教师数学计划
4. 2016年八年级上册数学教学计划
5. 八年级上学期数学教学工作计划人教版免费
人教版八年级上册数学提纲
对数学的定义、法则、公式、定理等,理解了的要记住,暂时不理解的也要记住,在记忆的基础上、在应用它们解决问题时再加深理解。归纳整理了人教版八年级数学上册知识点,欢迎阅读,希望对你复习有帮助。人教版八年级数学上册知识点总结
第十一章 三角形
一、知识框架:
二、知识概念:
1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。
5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
8.多边形的内角:多边形相邻两边组成的角叫做它的内角。
9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。
12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做多边形覆盖平面(平面镶嵌)。镶嵌的条件:当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个时,就能拼成一个平面图形。
13.公式与性质:
⑴三角形的内角和:三角形的内角和为180°
⑵三角形外角的性质:
性质1:三角形的一个外角等于和它不相邻的两个内角的和。
性质2:三角形的一个外角大于任何一个和它不相邻的内角。
⑶多边形内角和公式:边形的内角和等于·180°
⑷多边形的外角和:多边形的外角和为360°。
⑸多边形对角线的条数:①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形.②边形共有条对角线。
第十二章 全等三角形
一、知识框架:
二、知识概念:
1.基本定义:
⑴全等形:能够完全重合的两个图形叫做全等形。
⑵全等三角形:能够完全重合的两个三角形叫做全等三角形。
⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点。
⑷对应边:全等三角形中互相重合的边叫做对应边。
⑸对应角:全等三角形中互相重合的角叫做对应角。
2.基本性质:
⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性。
⑵全等三角形的性质:全等三角形的对应边相等,对应角相等。
3.全等三角形的判定定理:
⑴边边边():三边对应相等的两个三角形全等。
⑵边角边():两边和它们的夹角对应相等的两个三角形全等。
⑶角边角():两角和它们的夹边对应相等的两个三角形全等。
⑷角角边():两角和其中一个角的对边对应相等的两个三角形全等。
⑸斜边、直角边():斜边和一条直角边对应相等的两个直角三角形全等。
4.角平分线:
⑴画法:
⑵性质定理:角平分线上的点到角的两边的距离相等。
⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上。
5.证明的基本方法:
⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)
⑵根据题意,画出图形,并用数字符号表示已知和求证。
⑶经过分析,找出由已知推出求证的途径,写出证明过程。
第十三章 轴对称
一、知识框架:
二、知识概念:
1.基本概念:
⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。
⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称。
⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。
⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角。
⑸等边三角形:三条边都相等的三角形叫做等边三角形。
2.基本性质:
⑴对称的性质:
①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线。
②对称的图形都全等。
⑵线段垂直平分线的性质:
①线段垂直平分线上的点与这条线段两个端点的距离相等。
②与一条线段两个端点距离相等的点在这条线段的垂直平分线上。
⑶关于坐标轴对称的点的坐标性质
。
⑷等腰三角形的性质:
①等腰三角形两腰相等。
②等腰三角形两底角相等(等边对等角)。
③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合。
④等腰三角形是轴对称图形,对称轴是三线合一(1条)。
⑸等边三角形的性质:
①等边三角形三边都相等。
②等边三角形三个内角都相等,都等于60°
③等边三角形每条边上都存在三线合一。
④等边三角形是轴对称图形,对称轴是三线合一(3条)。
3.基本判定:
⑴等腰三角形的判定:
①有两条边相等的三角形是等腰三角形。
②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)。
⑵等边三角形的判定:
①三条边都相等的三角形是等边三角形。
②三个角都相等的三角形是等边三角形。
③有一个角是60°的等腰三角形是等边三角形。
4.基本方法:
⑴做已知直线的垂线:
⑵做已知线段的垂直平分线:
⑶作对称轴:连接两个对应点,作所连线段的垂直平分线。
⑷作已知图形关于某直线的对称图形:
⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短。
第十四章 整式的乘除与分解因式
一、知识框架:
第十五章 分式
一、知识框架 :
●●●END●●●
数学是中考的一项重要内容,学好数学能够帮助我们提高总成绩,你会写复习提纲吗?下面我给大家分享一些人教版 八年级 上册数学提纲,希望能够帮助大家,欢迎阅读!
人教版八年级上册数学提纲
一、多边形
1、多边形:由一些线段首尾顺次连结组成的图形,叫做多边形。
2、多边形的边:组成多边形的各条线段叫做多边形的边。
3、多边形的顶点:多边形每相邻两边的公共端点叫做多边形的顶点。
4、多边形的对角线:连结多边形不相邻的两个顶点的线段叫做多边形的对角线。
5、多边形的周长:多边形各边的长度和叫做多边形的周长。
6、凸多边形:把多边形的任何一条边向两方延长,如果多边形的其他各边都在延长线所得直线的问旁,这样的多边形叫凸多边形。
说明:一个多边形至少要有三条边,有三条边的叫做三角形;有四条边的叫做四边形;有几条边的叫做几边形。今后所说的多边形,如果不特别声明,都是指凸多边形。
7、多边形的角:多边形相邻两边所组成的角叫做多边形的内角,简称多边形的角。
8、多边形的外角:多边形的角的一边与另一边的反向延长线所组成的角叫做多边形的外角。
注意:多边形的外角也就是与它有公共顶点的内角的邻补角。
9、多边形内角和定理:n边形内角和等于(n-2)180°。
10、多边形内角和定理的推论:n边形的外角和等于360°。
说明:多边形的外角和是一个常数(与边数无关),利用它解决有关计算题比利用多边形内角和公式及对角线求法公式简单。无论用哪个公式解决有关计算,都要与解方程联系起来,掌握计算 方法 。
二、四边形
在同一平面内,由不在同一直线上的四条线段首尾顺次相接的图形叫做四边形。
三、凸四边形
把四边形的任一边向两方延长,如果其他个边都在延长所得直线的同一旁,这样的四边形叫做凸四边形。
四、对角线
在四边形中,连接不相邻两个顶点的线段叫做四边形的对角线。
五、四边形的不稳定性
三角形的三边如果确定后,它的形状、大小就确定了,这是三角形的稳定性。但是四边形的四边确定后,它的形状不能确定,这就是四边形所具有的不稳定性,它在生产、生活方面有着广泛的应用。
四边形的内角和定理及外角和定理
四边形的内角和定理:四边形的内角和等于360°。
四边形的外角和定理:四边形的外角和等于360°。
推论:多边形的内角和定理:n边形的内角和等于180°。
多边形的外角和定理:任意多边形的外角和等于360°。
提升数学成绩的方法有哪些
考试的方法
1、良好心态考生要自信,要有客观的考试目标。追求正常发挥,而不要期望自己超长表现,这样心态会放的很平和。沉着冷静的同时也要适度紧张,要使大脑处于最佳活跃状态。
2、考试从审题开始审题要避免“猜”、“漏”两种不良习惯,为此审题要从字到词再到句。
3、学会使用演算纸要把演算纸看成是试卷的一部分,要工整有序,为了方便检查要写上题号。
4、正确对待难题难题是用来拉开分数的,不管你水平高低,都应该学会绕开难题最后做,不要被难题搞乱思绪,只有这样才能保证无论什么考试,你都能排前几名。
认真“听”的习惯
为了教和学的同步,教师应要求学生在课堂上集中思想,专心听老师讲课,认真听同学发言,抓住重点、难点、疑点听,边听边思考,对中、高年级学生提倡边听边做听课笔记。
积极“想”的习惯
积极思考老师和同学提出的问题,使自己始终置身于教学活动之中,这是提高学习质量和效率的重要保证。学生思考、回答问题一般要求达到:有根据、有条理、符合逻辑。随着年龄的升高,思考问题时应逐步渗透联想、假设、转化等数学思想,不断提高思考问题的质量和速度。
适当多做题,养成良好的解题习惯
要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。
在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。
数学证明题不会怎么办
1.读题要细心
有些学生一看到某一题前面部分有似曾相识的感觉,就直接写答案,这种还没有弄清楚题目讲的是什么意思,题目让你求证的是什么都不知道,这非常不可取,我们应该逐个条件的读,给的条件有什么用,在脑海中打个问号,再对应图形来对号入座,结论从什么地方入手去寻找,也在图中找到位置。
2.要记
这里的记有两层意思。第一层意思是要标记,在读题的时候每个条件,你要在所给的图形中标记出来。如给出对边相等,就用边相等的符号来表示。第二层意思是要牢记,题目给出的条件不仅要标记,还要记在脑海中,做到不看题,就可以把题目复述出来。
3.要引申
难度大一点的题目往往把一些条件隐藏起来,所以我们要会引申,那么这里的引申就需要平时的积累,平时在课堂上学的基本知识点掌握牢固,平时训练的一些特殊图形要熟记,在审题与记的时候要想到由这些条件你还可以得到哪些结论(就像电脑一下,你一点击开始立刻弹出对应的菜单),然后在图形旁边标注,虽然有些条件在证明时可能用不上,但是这样长期的积累,便于以后难题的学习。
人教版八年级上册数学提纲相关 文章 :
★ 八年级上册数学复习提纲整理
★ 人教版八年级数学上册知识点总结
★ 八年级上册数学复习提纲2020
★ 初二数学上册知识点总结
★ 八年级数学知识点整理归纳
★ 初二数学知识点归纳上册人教版
★ 数学八年级上册知识点整理
★ 2017人教版八年级数学上册知识点归纳
★ 2021八年级上册数学复习提纲
★ 人教版八年级上册数学教材分析
好了,今天关于“八年级上册数学书人教版”的话题就讲到这里了。希望大家能够通过我的介绍对“八年级上册数学书人教版”有更全面、深入的认识,并且能够在今后的实践中更好地运用所学知识。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。